Addition and subtraction

Use the formal column methods to add and subtract larger numbers.
E.g.

81686
 66549
 148235

111

${ }^{2}$ Q 9 Q'Q 2 '5 1467 1538

Multiplication

Partitioning grid method and the formal column method.
E.g.
$23 \times 4=$

$57 \times 26=$

X	50	7
20	1000	140
6	$?$	

Division

Use their knowledge of times tables and multiples of 10 to answer division calculations.
E.g.
$96 \div 5=19 r 1$
10 lots of 5 make 50
9 lots of 5 make 45
So 19 lots of 5 make 95
With 1 left over, making 96

Use the formal method for short division (the bus stop method), including remainders.
E.g.

Read, write and order large numbers. Understand the value of each digit.
E.g.

7,830,374
Seven million, eight hundred and thirty thousand, three hundred and seventy four $\underline{3}=$ thirty thousand $=30,000$

Angles

To be able to estimate, measure and draw all angles (acute, obtuse and reflex) of any size up to 360°.

Negative numbers

Year 5
Maths Placemat

Prime numbers

and factors of numbers
To be able to recognise and identify numbers that fall into these categories.
Squared and cubed numbers Recognise and use the symbols (${ }^{2 / 3}$). To be able to square a number, find the square root of a number and cube numbers.

Linking decimals, percentages and fractions

FRACTION	DECIMAL	PERCENTAGE
1	1.0	100%
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{1}{5}$	0.2	20%
$\frac{1}{10}$	0.1	10%
$\frac{1}{20}$	0.05	5%

Multiplying by 10, 100 and 1000

Fractions

To compare and order simple fractions.
E.g.
$\frac{1}{4}$ is smaller than $\frac{1}{3}$
To be able to convert improper fractions and mixed number fractions.
E.g.
$\frac{6}{4}=1 \frac{2}{4}$
$3 \frac{2}{3}=\frac{11}{3}$

Be able to convert fractions so that they have the same denominator, where the denominators are multiples of the same number.
E.g.

$$
\begin{aligned}
& 2 \times 6=\frac{12}{18} \\
& 3 \times 6 \\
& 5 \times 3=\frac{15}{18} \\
& 6 \times 3
\end{aligned}
$$

Jigsaw number recognition

Using their knowledge of jigsaw numbers to ten, make links between calculations and work mentally.
E.g.

$4+6=10$
$14+6=20$
$34+6=40$
$40-4=36$
$16+84=100$
$346+54=400$

